See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306146298

Functional tissues based on graphene oxide: facile preparation and dye adsorption properties

 $\textbf{Article} \cdot \textbf{July 2016}$

DOI: 10.7498/aps.65.146802

citations 0	5	reads 34				
5 authors, including:						
	Shi Su Southeast University (China) 17 PUBLICATIONS 63 CITATIONS		Litao Sun Southeast University (China) 158 PUBLICATIONS 3,583 CITATIONS			
	SEE PROFILE		SEE PROFILE			

All content following this page was uploaded by Litao Sun on 28 November 2016.

物理学报 Acta Physica Sinica

氧化石墨烯基功能纸的简易制备和染料吸附性能

曹海燕 毕恒昌 谢骁 苏适 孙立涛

Functional tissues based on graphene oxide: facile preparation and dye adsorption properties

Cao Hai-Yan Bi Heng-Chang Xie Xiao Su Shi Sun Li-Tao

引用信息 Citation: Acta Physica Sinica, 65, 146802 (2016) DOI: 10.7498/aps.65.146802 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.146802 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I14

您可能感兴趣的其他文章 Articles you may be interested in

化学气相沉积法制备的石墨烯晶畴的氢气刻蚀

Hydrogen etching of chemical vapor deposition-grown graphene domains 物理学报.2016, 65(9): 098101 http://dx.doi.org/10.7498/aps.65.098101

基于石墨烯互补超表面的可调谐太赫兹吸波体

Tunable terahertz absorber based on complementary graphene meta-surface 物理学报.2016, 65(1): 018101 http://dx.doi.org/10.7498/aps.65.018101

含石墨烯临界耦合谐振器的吸收特性研究

Study on the absorbing properties of critically coupled resonator with graphene 物理学报.2015, 64(23): 238103 http://dx.doi.org/10.7498/aps.64.238103

单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究 Transmission mode of a single layer graphene and its performance in the detection of the vibration spectrum of gas molecular

物理学报.2015, 64(19): 198102 http://dx.doi.org/10.7498/aps.64.198102

石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究

Scanning tunneling microscopy study of in-plane graphene-hexagonal boron nitride heterostructures 物理学报.2015, 64(7): 078101 http://dx.doi.org/10.7498/aps.64.078101

甲烷在不同分子筛中吸附的理论对比研究

The theoretical study on CH₄ adsorption in different zeolites 物理学报.2012, 61(14): 146802 http://dx.doi.org/10.7498/aps.61.146802

氧化石墨烯基功能纸的简易制备和染料 吸附性能^{*}

曹海燕¹⁾ 毕恒昌¹⁾ 谢骁¹⁾ 苏适¹⁾ 孙立涛^{1)2)†}

1)(东南大学, 微电子机械系统教育部重点实验室, FEI纳皮米中心, 南京 210096)2)(江南石墨烯研究院, 江南石墨烯研究院先进碳材料应用联合研发中心, 常州 213100)

(2016年3月16日收到;2016年5月6日收到修改稿)

染料污染是水体污染的一个重要方面,吸附法因具有效率高,简单易操作等优点,被认为优于其他的染料 废水处理技术.本文采用一种简单的方法制备了具有高吸附、易分离特性的氧化石墨烯基功能纸,研究其对水 中阳离子染料的吸附,考察了吸附时间、染料初始浓度、吸附剂用量及温度对吸附性能的影响.利用扫描电子显微镜、拉曼光谱分析、热重分析、紫外可见吸收光谱仪等测试方法,对氧化石墨烯基功能纸的结构、形貌和吸 附性能进行表征分析.结果表明:氧化石墨烯基功能纸对阳离子染料亚甲基蓝和罗丹明 B 有良好的吸附效果,当亚甲基蓝和罗丹明 B 的初始浓度分别为40 和 30 mg·L⁻¹,功能纸对两种染料的吸附量分别达到了 54.84 和 21.74 mg·g⁻¹.而且这种氧化石墨烯基吸附材料很好地解决了吸附剂与水体的分离问题.另外,实验还发现,在氧化石墨烯基功能纸吸附染料的过程中,氧化石墨烯对染料的吸附作用远远大于纸巾本身对染料的吸附.例如,对于罗丹明 B,纸巾的吸附量几乎为零,当罗丹明 B 的初始浓度为 30 mg·L⁻¹时,以纸巾上负载的氧化 石墨烯质量计算的吸附量达到了 183 mg·g⁻¹.动力学研究结果表明吸附过程较好地符合伪二级动力学模型,热力学数据分析,氧化石墨烯基功能纸对两种染料的吸附行为是自发吸热的.研究结果对基于氧化石墨烯的吸附材料的制备和应用提供了参考依据.

关键词:吸附,分离,氧化石墨烯,动力学模型 PACS: 68.43.Mn, 81.05.ue, 81.16.Be

1 引 言

染料是造成印染废水色度高的主要因素,即使 排入水体的浓度很低,也会降低水体的透光率,大 量消耗水中的氧,造成水体缺氧,对水生生物、微生 物的生长不利.大多有机染料是芳香族化合物,生 物毒性较大难降解,具有"三致"(致癌、致畸、致突 变)作用^[1].

目前处理染料污染的方法主要有膜分离法、混凝沉淀法、化学氧化法、电解法、生物法等^[2,3],且都有大量研究及应用的报道,但是各自存在不同

DOI: 10.7498/aps.65.146802

程度的缺陷,如: 膜分离法成本高,能耗大; 混凝 沉淀法需要大量的混凝剂, 沉渣量多, 易造成二次 污染; 化学氧化法应用范围窄, 投资大; 电解法阳 极材料消耗较大; 生物法占地面积大^[4-9].鉴于这 些缺点和不足, 上述方法都不能应用于大规模染 料废水处理, 吸附方法因具有不产生副产物、成本 低、设备简单、操作性强等特点, 被认为是最经济 有效的方法^[1,2]. 该技术的关键是吸附材料. 活性 炭是已经在全球广泛使用的吸附剂之一, 但是高成 本限制了其进一步发展^[10,11]. 近来, 氧化石墨烯 (graphene oxide, GO) 作为碳族的新成员, 表面具 有多种高反应活性的含氧基团羰基 (C=O), 羧基

© 2016 中国物理学会 Chinese Physical Society

^{*} 国家杰出青年科学基金(批准号: 11525415)、国家自然科学基金国际(地区)合作与交流项目(批准号: 51420105003)、国家重大科 研仪器设备研制专项(批准号: 11327901)和国家自然科学基金(批准号: 51302037)资助的课题.

[†]通信作者. E-mail: slt@seu.edu.cn

(C—OOH), 羟基(C—OH)等^[2],这些基团作为吸 附位点能够吸附多种分子或离子,在吸附材料的研 究上已取得了瞩目的成就.Namvari和Namazi^[10] 将四氧化三铁(Fe₃O₄)纳米颗粒以共价键形式与 GO复合,这种磁性GO对亚甲基蓝的吸附量达到 了112 mg·g⁻¹.Li等研究GO对多种阳离子染料 (亚甲基蓝、结晶紫、碱性品红)的吸附性能^[12].GO 和其他吸附剂一样,存在使用后与水体难分离的缺 点,磁分离技术近年来在水处理领域成为一门新兴 的技术,将GO与磁性纳米粒子结合制备GO基复 合材料达到固液分离的目的,虽然这种磁性吸附材 料基本解决了回收问题,但是回收操作不当易造成 二次污染^[12-14].

综上,本文鉴于GO高强度、低密度、多活性吸附位点(缺陷、官能团)等特点及纸巾(tissues,以下简称GO₀T)廉价、可再生、湿韧强度高的优点,以GO₀T为载体将GO附着于载体上,制备出了具有高吸附、易分离特性,且不会二次污染水质的GO基功能纸.当亚甲基蓝(methylene blue,MB)和罗丹明B(rhodamine B, RhB)的初始浓度分别为40和30 mg·L⁻¹,功能纸对两种染料的吸附量分别达到了54.84和21.74 mg·g⁻¹.这种用于废

水处理环境友好的材料,具有很好的市场推广和 应用价值.

2 实验部分

2.1 实验仪器

场发射扫描电镜 (scanning electron microscope, SEM, Nova NanoSEM450, 美国FEI公司); 热分析仪 (thermal gravity analysis, TGA, Pyris 1DSC, 美国PerkinElmer公司);激光显微拉曼光 谱仪 (inVia Reflex, 英国Renishaw公司);双光束 紫外可见分光光度计 (double-beam UV-Vis spectrophotometer, UV-Vis, TU-1901, 北京普析通用 仪器有限责任公司).

2.2 实验材料

GO₀T(洁云牌抽纸); MB(南京化学试剂 有限公司), 分子式C₁₆H₁₈ClN₃S·3H₂O, 分子量 373.9, 分子结构式如图1(a) 所示; RhB(分析纯 AR, 天津市科密欧化学试剂有限公司), 分子 式C₂₈H₃₁ClN₂O₃, 分子量479.0, 分子结构式如 图1(b)所示.

图 1 分子结构式 (a) MB; (b) RhB

Fig. 1. Structures of molecule: (a) MB; (b) RhB.

图 2 (网刊彩色) 功能纸 (a) 制备流程示意图; (b) 实物图

Fig. 2. (color online) (a) Schematic fabrication process; (b) optical images of functional tissues.

2.3 制备方法

采用改进的Hummers法制备氧化石墨^[15],称 取一定质量的氧化石墨分别制成浓度为1,3,5, 7 mg·mL⁻¹的GO溶液,在功率为120 W的超声 装置中室温下超声3—5 h 后,将GO₀T放入以上 不同浓度的GO溶液中并浸泡3 h,取出浸泡后的 GO₀T,放在干燥箱中40 °C下干燥12 h,得到四种 不同浓度的GO基功能纸(以下简称GO₁T,GO₃T, GO₅T,GO₇T).图²(a)是制备流程示意图,图²(b) 是制备好的实物图.

2.4 阳离子染料吸附实验

2.4.1 吸附实验

将面积为45 cm²的GO₀T和GO₁T,GO₃T,GO₅T,GO₇T分别加入到体积为100 mL,浓度为25 mg·L⁻¹的MB溶液和30 mg·L⁻¹的RhB溶液中,室温(298 K)下进行静态吸附.然后在不同时间间隔对MB和RhB溶液进行取样,使用UV-Vis分别在波长为664 nm(MB)和554 nm (RhB)下测定取样浓度.不同时间的吸附量和去除率 e_r (removal efficiency)由下面的公式表示^[11,13]:

$$q_t = \frac{(c_0 - c_t) \times v}{m},\tag{1a}$$

$$e_{\rm r} = \frac{c_0 - c_{\rm e}}{c_0} \times 100\%,$$
 (1b)

其中, q_t 为t时间 (min) 的吸附量 (mg·g⁻¹), c_0 为 染料的初始浓度 (mg·L⁻¹), c_t 为t时间的染料 浓度 (mg·L⁻¹), c_e 为吸附平衡时的染料浓度 (mg·L⁻¹), v为染料溶液的体积 (L), m 为吸附剂的 质量 (g).

2.4.2 初始浓度对吸附的影响

将面积为81 cm²的GO₅T加入到体积为 100 mL,浓度分别为20,25,35 mg·L⁻¹的MB溶 液和10,30,50 mg·L⁻¹的RhB溶液中,室温下进 行静态吸附,使用UV-Vis测定取样浓度.

2.4.3 吸附剂的用量对吸附的影响

将面积为20 cm²的GO₇T加入到体积为 100 mL,浓度分别为40 mg·L⁻¹的MB 溶液和 30 mg·L⁻¹的RhB溶液中,室温下进行静态吸附, 吸附平衡后取样,然后以20 cm²为增量不断加入 功能纸,直至面积为120 cm²,使用UV-Vis测定取 样浓度.

2.4.4 温度对吸附的影响

将面积为45 cm²的GO₇T加入到体积 为100 mL,浓度为25 mg·L⁻¹的MB溶液和 30 mg·L⁻¹的RhB溶液中,分别在298,303,313 K 温度条件下进行静态吸附,使用UV-Vis测定取样 浓度.

3 结果与讨论

3.1 氧化石墨烯基功能纸的表征

图3是单位面积功能纸上GO的负载量随着GO浓度变化的曲线图.浓度越高,单位面积负载的GO质量越大.很明显,正如图2(b)所示,随着浓度增加,功能纸颜色逐渐变深.

Fig. 3. Loading of GO under different concentrations.

功能纸的SEM图像如图4所示. 图4(a)是GO₀T的SEM图像,呈现的是堆叠缠绕不规则的纤维状,几乎平滑的表面形貌,图4(b)—图4(d)是GO₃T在高倍下的SEM图像,纤维表面变得非常粗糙,原因是GO的引入,将具有光滑表面的纤维包裹住.

一方面, 纤维素的分子结构中具有大量的羟基 结构, 使得纤维素分子内分子间形成大量的氢键, 正是因为纤维素本身的高结晶度和强大的氢键作 用, 使得 GO与 GO₀T 的结合, 只能发生在纤维素 的表面^[16,17]. 另一方面, GO表面含有丰富的含氧 官能团, 易与纤维素分子结构中丰富的羟基, 通过 非共价 (氢键)形式牢固结合.

在纤维棒边缘和纤维棒与纤维棒之间有许多 形状大小不一的GO片,由于范德瓦耳斯力和π-π 堆积作用^[18],片层之间相互紧密地堆叠聚合在一 起.GO片的边缘处因为含氧官能团的存在有明显 的褶皱和卷曲现象.

图 4 (网刊彩色) 功能纸的 SEM 图像 (a) GO₀T (1000×); (b)–(d) GO₃T (5000×, 10000×, 20000×) Fig. 4. (color online) SEM images of: (a) GO₀T(1000×); (b)–(d) GO₃T (5000×, 10000×, 20000×) at high magnification.

图 5 (网刊彩色)功能纸在水中搅拌 (a) 0—80 s; (b) 结束 Fig. 5. (color online) Stirring of functional tissues in water: (a) 0-80 s; (b) ending.

实验中,将功能纸放在清水中先浸泡两天, 然后再搅拌(300 r/min),结果如图5所示,其中 图5(a)对应不同时间点搅拌下的状态,图5(b)显 示出功能纸在搅拌结束后水质情况,仍然是非常清 澈的.说明GO₀T与GO之间确实通过很强的相互 作用(氢键)交缠在一起,这种强烈的氢键作用导致 GO 与纤维素有良好的界面黏结力,即相容性很好, 强度比较:共价键>氢键>范德瓦耳斯力^[16].另 外,纤维素分子内分子间也存在氢键,使其具备大的湿韧强度^[17].

图 6 是 GO₀T 和 GO₅T 的 TGA 曲线, 由图 6 中 的数据观察, 在温度低于 150 °C 范围内, GO₀T 和 GO₅T 都有一定的质量损失, 这主要来源于它们 所吸附水分子的挥发; 在测试温度 150—300 °C 范 围内, 相对 GO₀T, GO₅T 出现了一次质量损失差 $\Delta = 2.337\%$, 这可能是 GO 中含氧基团如羟基、羧 基、环氧基团等在高温下发生热分解所致^[19,20];随着温度的升高,GO₀T和GO₅T都遭受了巨大的质量损失,而这主要由纤维素的热分解所致,该过程伴随有大量气体产物生成^[21].

功能纸的拉曼光谱如图7所示. GO₀T的拉 曼光谱图,没有明显的峰存在;GO₃T的拉曼图,在

图 6 (网刊彩色) 功能纸的 TGA 曲线图

Fig. 6. (color online) TGA curves of functional tissues.

图 7 (网刊彩色) 功能纸的拉曼光谱图

Fig. 7. (color online) Raman spectrum of functional tissues.

1592 cm⁻¹ 附近存在一个强吸收峰 (G峰), 对应 E_{2g} 光学模的一阶拉曼散射,在1357 cm⁻¹ 附近出现的 较强吸收峰 (D峰),表明 GO 结构中一部分 sp² 杂 化碳原子转化成 sp³ 杂化结构,引入了缺陷 [22-24].

综合 SEM, TGA 和拉曼表征分析和水中搅拌 实验,可以证明 GO 附着于 GO₀T上.一方面,纤维 素具备高的机械强度,但是其吸附能力并不是很 强.除了在纤维素的结晶区中,还有很多游离的羟 基^[25],可以与 GO 的羟基通过氢键结合,所以,GO 的成功负载使得功能纸的吸附性能可以得到提高. 另一方面,GO 与 GO₀T 中氢键的结合以及 GO 与 GO 间的堆叠聚合,理论上会使 GO 中有效吸附位 点或者活性位点减少,降低了吸附性能^[18].因此, 接下来探讨 GO 基功能纸的吸附性能.

3.2 染料吸附性能

3.2.1 功能纸的吸附量和去除率

功能纸对染料的吸附量随时间变化曲线如 图 8 所示, 在吸附的初始阶段 0—500 min, 功能纸 对水中染料的吸附比较迅速, 随着吸附时间的增 加, 吸附量缓慢上升, 2000 min时吸附达到平衡. 所以, 2000 min的静态混合接触可以使吸附反应充 分达到平衡.

GO₀T 对 MB 有 吸 附 作 用,对 RhB 几 乎 不 吸 附,GO₀T,GO₁T,GO₁T,GO₃T,GO₅T,GO₇T 对 MB 和 RhB 的 吸 附 量 分 别 为 9.82,11.30,13.20,14.41,17.07 mg·g⁻¹ 和 0, 3.72,10.63,15.55,16.88 mg·g⁻¹,具体数据如图 8 所示,GO 浓度越高

图 8 功能纸的动态吸附过程 (a) MB, (b) RhB (MB 和 RhB 的初始浓度分别为 25 和 30 mg·L⁻¹, 体积为 100 mL, 纸的面积为 45 cm², 温度为 298 K)

Fig. 8. Dynamic adsorption process of functional tissues: (a) MB, (b) RhB (initial concentration: MB $25 \text{ mg}\cdot\text{L}^{-1}$, RhB 30 mg·L⁻¹; volume: 100 mL; area: 45 cm^2 ; temperature: 298 K).

的功能纸对染料的去除效果越好,这是因为同等面积GO浓度越高,负载的GO质量越大,吸附活性位点越多,吸附量越高.

功能纸对 RhB 的吸附效果没有 MB 显著, 这是因为吸附剂的吸附能力不仅与吸附剂材料有关, 还

与吸附质的性质有关,如吸附质的溶解度、表面自 由能、极性、分子的结构、吸附质分子量大小等^[11].

图9是功能纸对染料的去除率柱状图,从 图9中可以看出,染料的去除率随着制备功能纸 的GO浓度的增加而提高.

图 9 (网刊彩色) 功能纸的去除率 (a) MB, (b) RhB (MB 和 RhB 的初始浓度分别为 25 和 30 mg·L⁻¹, 体积为 100 mL, 纸的面积为 45 cm², 温度为 298 K)

Fig. 9. (color online) Removal efficiency of functional tissues for dyes: (a) MB, (b) RhB (initial concentration: MB 25 mg·L⁻¹, RhB 30 mg·L⁻¹, volume: 100 mL, area: 45 cm², temperature: 298 K).

3.2.2 初始浓度对吸附的影响

不同的染料初始浓度下, GO_5T 吸附染料的 曲线如图 10 所示, 当 MB 和 RhB 初始浓度分别为 20, 25, 35 mg·L⁻¹ 和 10, 30, 50 mg·L⁻¹ 时, 吸附 量分别为7.10, 8.87, 11.83 mg·g⁻¹ 和 4.04, 9.64, 15.76 mg·g⁻¹, 说明功能纸的吸附量随着染料初 始浓度的增加而增加, 这是因为在吸附剂用量相 等的情况下, 低浓度时溶液中的染料分子相对少, 故吸附量低; 随着浓度增加, 染料"分子压"相对 增大, 促进染料分子向吸附剂靠近, 吸附量有所升 高^[2,26,27].

图 10 初始浓度对功能纸吸附量的影响 (a) MB, (b) RhB (体积为 100 mL, 纸的面积为 81 cm², 温度为 298 K) Fig. 10. Effect of initial concentration on the adsorption capacity for functional tissues: (a) MB, (b) RhB (volume: 100 mL; area, 81 cm²; temperature: 298 K).

3.2.3 吸附剂的用量对吸附的影响

吸附剂的用量对吸附效果的影响如图 11 所示, MB和RhB的去除率变化分别为72.45%—94.54% 和34.68%—64.50%,随着向染料中投入GO₇T面 积的增加,功能纸上负载的GO质量增大,吸附活 性位点增多,去除率提高.同时,吸附量的变化分别 为54.84—11.87 mg·g⁻¹和21.74—6.60 mg·g⁻¹,以 及吸附密度(单位面积氧化石墨烯基功能纸上吸 附的染料质量)的变化分别为1453—316 mg·m⁻² 和576—178 mg·m⁻²,吸附量和吸附密度反而下降, 当吸附剂GO₇T质量或面积比较小时,溶液中的染 料分子和功能纸表面存在相对高的浓度差,即固 液相间吸附质浓度差高,因此更容易驱动染料分子向吸附位点靠近,被功能纸吸附,随着GO₇T质量或面积增加,驱动力减小,被功能纸吸附的染料分子减少,所以单位质量或单位面积的功能纸对染料的吸附减少.值得注意的是,虽然GO₀T对MB有吸附作用(对RhB几乎不吸附),但当功能纸吸附MB和RhB,发挥主要吸附作用的是纸上负载的GO.因此可以以GO₀T上负载的GO质量来计算吸附量,例如,当RhB的初始浓度为30 mg·L⁻¹,体积为100 mL,GO₇T面积为20—120 cm² 时,功能纸对RhB的吸附量分别为183,105,81,68,65,57 mg·g⁻¹.

图 11 (网刊彩色) 吸附剂的用量对去除率和吸附密度的 影响 (a) MB, (b) RhB (MB和 RhB 的初始浓度分别 为 40和 30 mg·L⁻¹, 体积为 100 mL, 温度为 298 K) Fig. 11. (color online) Effect of amount of adsorbent usage on the removal efficiency and adsorption density: (a) MB, (b) RhB (initial concentration: MB 40 mg·L⁻¹, RhB 30 mg·L⁻¹; volume, 100 mL; temperature, 298 K).

3.2.4 温度对吸附的影响

不同的吸附温度下, GO₇T 对染料的吸附量如 表1所示, 吸附量随着温度的增加而增加, 说明在 吸附过程中, 升高温度有利于吸附的进行.可能 原因是温度的升高, 染料分子的热运动加快, 使得 MB和RhB染料分子与功能纸吸附表面的碰撞概率增加^[28].但是,吸附过程的热效应较低,在通常 情况下温度变化对吸附量影响并不明显^[11].

表 1 温度对功能纸吸附量的影响 (MB 和 RhB 的初始浓 度分别为 25 和 30 mg·L⁻¹,体积为 100 mL,纸的面积为 45 cm²)

Table 1. Effect of temperature on the adsorption capacity for functional tissues (initial concentration: MB 25 mg·L⁻¹, RhB 30 mg·L⁻¹; volume: 100 mL; area: 45 cm^2).

温度/K	MB吸附量/mg·g ⁻¹	RhB吸附量/mg·g ⁻¹
298	17.07	16.83
303	17.19	16.92
313	17.41	17.11

3.3 吸附动力学

吸附过程的动力学研究主要是用来研究吸附 过程和吸附机理.可以由两种简单的动力学模 型解释,即:伪一级动力学模型(pseudo-first-order model)、伪二级动力学模型(pseudo-second-order model)^[29-31].

伪一级动力学模型适用于固-液吸附体系,能 够描述吸附过程的简单动力学模式,假定吸附受扩 散控制,方程式如下:

$$\ln(q_{\rm e} - q_t) = \ln q_{\rm e} - k_1 t, \qquad (2)$$

其中, q_t 为t 时间的吸附量 (mg·g⁻¹), q_e 为平衡时 的吸附量 (mg·g⁻¹), k_1 为伪一阶速率常数 (min⁻¹), k_1 值的大小反映吸附速率的快慢.

伪二级动力学模型是建立在速率控制步骤是 化学反应或通过电子共享或电子得失的化学吸附 基础上,方程式如下:

$$\frac{t}{q_t} = \frac{1}{k_2 q_{\rm e}^2} + \frac{t}{q_{\rm e}},\tag{3}$$

其中, k_2 为伪二阶速率常数 (g·mg⁻¹·min⁻¹).

利用最小二乘法,将实验数据与动力学模型拟合,分别以 $\ln(q_e - q_t)$ 和 t/q_t 对t做图,根据拟合效果,可以确定吸附类型,对吸附机理和吸附速率控制进行探究^[26].

功能纸吸附染料的伪一级动力学和伪二级 动力学曲线如图12和图13所示,通过拟合直线 的斜率和截距计算得到的动力学参数如表2和 表3所列.

吸附 MB (a) 伪一级动力学; (b) 伪二级动力学

Fig. 12. (color online) The adsorption of MB on functional tissues: (a) Pseudo-first-order; (b) pseudo-second-order kinetic.

图 13 (网刊彩色) 功能纸吸附 RhB (a) 伪一级动力学; (b) 伪二级动力学

Fig. 13. (color online) The adsorption of RhB on functional tissues: (a) pseudo-first-order; (b) pseudo-second-order kinetic.

表 2 MB 的动力学参数 Table 2. Parameters of kinetic models for MB.

		Pseudo-first-order			Pseudo-second-order			
	$q_{\rm e,exp}/{\rm mg}{\cdot}{\rm g}^{-1}$	$k_1/{\rm min}^{-1}$	$q_{\rm e,cal}/{\rm mg}{\cdot}{\rm g}^{-1}$	R^2	$k_2/g \cdot mg^{-1} \cdot min^{-1}$	$q_{\rm e,cal}/{\rm mg}{\cdot}{\rm g}^{-1}$	R^2	
$\mathrm{GO}_{1}\mathrm{T}$	11.296	9.32×10^{-4}	3.844	0.60676	0.00097	11.392	0.99896	
$\mathrm{GO}_3\mathrm{T}$	13.198	0.00103	4.751	0.75769	0.00065	13.517	0.99871	
$\mathrm{GO}_{5}\mathrm{T}$	14.411	0.00155	5.851	0.90561	0.00072	14.769	0.99985	
$\mathrm{GO}_{7}\mathrm{T}$	17.070	0.00139	9.120	0.92382	0.00037	17.737	0.99957	

表 3 RhB 的动力学参数 Table 3. Parameters of kinetic models for RhB.

		Pseudo-first-order			Pseudo-second-order		
	$q_{\rm e,exp}/{\rm mg}{\cdot}{\rm g}^{-1}$	k_1/\min^{-1}	$q_{\rm e,cal}/{\rm mg}{\cdot}{\rm g}^{-1}$	R^2	$k_2/g \cdot mg^{-1} \cdot min^{-1}$	$q_{\rm e,cal}/{\rm mg}{\cdot}{\rm g}^{-1}$	R^2
$\mathrm{GO}_{1}\mathrm{T}$	3.721	0.00169	4.739	0.92615	5.38×10^{-5}	6.813	0.43656
$\mathrm{GO}_3\mathrm{T}$	10.634	0.00201	11.564	0.91046	0.00021	11.834	0.99082
$\mathrm{GO}_{5}\mathrm{T}$	15.554	0.00131	11.918	0.95267	0.00013	17.507	0.98375
$\mathrm{GO}_{7}\mathrm{T}$	16.876	0.00139	11.417	0.94416	0.00017	18.406	0.99385

由表 2 和表 3 中线性相关系数 R^2 可知, 功能纸 对染料的吸附更适合用伪二级动力学模型来描述 (MB, $R^2 > 0.99$). 尽管伪一级动力学模型已经广 泛地用于各种吸附过程, 但它却有局限性. 伪一级 动力学曲线是由 $\ln(q_e - q_t)$ 对 t 作图, 因此必须先得 到 q_e 值, 但在实际的吸附系统中, 可能由于吸附太 慢, 达到平衡所需时间太长, 因而不可准确测得其 平衡吸附量 q_e 值, 因此, 它常常只适合于吸附初始 阶段的动力学描述, 而不能准确地描述吸附的全过 程. 伪二级动力模型适用于描述整个吸附过程, 且 曲线拟合之前不需要 qe 参数值^[29,30].因此,功能 纸对染料的吸附以化学反应为主要的速率控制步 骤,即化学吸附占主导作用,化学吸附可逆性差,吸 附牢固,不易脱落.而且,伪二级模型拟合计算出 的 qe,cal 与实验得到的 qe,exp 非常接近.值得注意的 是,GO₁T 吸附 RhB 的伪二级模型的 R² 值小于伪 一级模型,其吸附动力学主要是受物质传输步骤所 控制,受化学作用控制作用小,这可能与吸附剂的 用量、吸附剂和吸附质的性质等有关.图14是功能 纸与 MB 和 RhB 相互作用可能的示意图.

图 14 功能纸与染料相互作用的示意图 (a) MB; (b) RhB Fig. 14. Schematic diagrams of the interaction for functional tissues: (a) MB; (b) RhB.

3.4 吸附热力学

为了更好地研究功能纸对染料的吸附机理,除 了动力学理论,还可以通过热力学理论对实验数据 做进一步的验证分析,以便更清楚了解吸附过程和 吸附原理.吸附温度对吸附过程的影响可通过以下 公式说明^[2]:

$$K_{\rm d} = q_{\rm e}/c_{\rm e},\tag{4}$$

$$\ln K_{\rm d} = \frac{\Delta S}{R} - \frac{\Delta H}{RT},\tag{5}$$

$$\Delta G = \Delta H - T\Delta S,\tag{6}$$

其中, $K_{\rm d}$ 为分配系数 (L·g⁻¹), $q_{\rm e}$ 为平衡时的吸附量 (mg·g⁻¹), $c_{\rm e}$ 为吸附平衡时的染料浓度 (mg·L⁻¹), ΔG , ΔH 和 ΔS 分别是热力学参数吉 布斯自由能 (J·mol⁻¹)、标准焓 (J·mol⁻¹) 和标准熵

(J·mol⁻¹·K⁻¹), *T* 为绝对温度(K), *R* 为标准气体 常数(8.314 J·mol⁻¹·K⁻¹).

由表1中不同温度下的吸附量,可以通过(4) 式计算出不同温度下对应的 K_d 值,再以 $\ln K_d$ 对 1/T作拟合直线,将拟合直线的斜率和截距代入 (5)式中,可以计算得到 ΔH 和 ΔS ,最后通过(6)式 得到 ΔG .表4是在不同温度下功能纸吸附 MB和 RhB的热力学参数值.由表4可知,在不同温度下 ΔG 均为负值,表明吸附过程为自发的,而且 ΔG 值随温度升高而减少,说明在较高的温度下,功能 纸对染料的吸附更容易进行. ΔH 为正值表明吸 附过程是吸热反应,与前面的吸附实验数据结果一 致. ΔS 为正值表明功能纸对 MB和 RhB 的吸附过 程中,固-液相界面的混乱度增加^[28].即吸附过程 是自发、吸热和混乱度增大的过程.

表4 不同温度下功能纸吸附 MB 和 RhB 的热力学参数

Table 4. Thermodynamic parameters for the adsorption of MB and RhB on the functional tissues at different temperatures.

染料	R^2	$\Delta H/{\rm kJ\cdot mol^{-1}}$	$\Delta S/J \cdot mol^{-1} \cdot K^{-1}$ -	$\Delta G/{ m kJ\cdot mol^{-1}}$		
				298 K	303 K	313 K
MB	0.999	7.73	38.86	-3.85	-4.04	-4.43
RhB	0.996	4.22	22.41	-2.46	-2.57	-2.79

4 结 论

本文将 GO 与 GO₀T 自组装制备了 GO 基功能 纸,在组装过程中,GO₀T 可以作为 GO 的载体, GO 的含氧官能团和纤维素通过氢键作用形成结构 稳定的功能纸.SEM,TGA 和拉曼分析都证明了 GO 附着于 GO₀T上.吸附实验表明功能纸对阳离 子染料有很好的吸附效果,当MB 和 RhB 的初始浓 度分别为 40 和 30 mg·L⁻¹,功能纸对两种染料的吸 附量分别达到了 54.84 和 21.74 mg·g⁻¹.其中,功能 纸吸附染料受吸附时间、染料初始浓度、吸附剂用 量和吸附温度等因素的影响.功能纸吸附染料的动 力学研究表明伪二级动力学模型更适合解释其吸 附过程.功能纸对染料的吸附是自发吸热的过程.

功能纸作为染料吸附剂与普通吸附剂相比,最 大的优势是吸附剂与水体分离简便,没有对水溶液 形成二次污染,具有其他材料不可比拟的优点和特 性,极具开发潜力和应用前景,在水污染处理方面 有着重要的应用.

参考文献

- Gupta V K, Mohan D, Sharma S, Sharma M 2000 Sep. Sci. Technol. 35 2097
- [2] Shi H C, Li W S, Zhong L, Xu C J 2014 Ind. Eng. Chem. Res. 53 1108
- [3] Chakraborty S, Purkait M K, Dasgupta S, De S, Basu J K 2003 Sep. Purif. Technol. 31 141
- [4] Yu S C, Liu M H, Ma M, Qi M, Lü Z H, Gao C J 2010
 J. Membr. Sci. 350 83
- [5] Kim T H, Park C, Yang J, Kim S 2004 J. Hazard. Mater. 112 95
- [6] Sekaran G, Karthikeyan S, Boopathy R, Maharaja P, Gupta V K, Anandan C 2014 Environ. Sci. Pollut. Res. 21 1489
- [7] Parsa J B, Merati Z, Abbasi M 2013 J. Ind. Eng. Chem. 19 1350

- [8] Mohammed F M, Roberts E P L, Hill A, Campen A K, Brown N W 2011 Water Res. 45 3065
- [9] Ju D G, Byun I G, Park J J, Lee C H, Ahn G H, Park T J 2008 Bioresour. Technol. 99 7971
- [10] Namvari M, Namazi H 2014 Polym. Int. 63 1881
- [11] Huang Y H, Xu T F, Yang L Y 2013 Water Treatment Technology (1st Ed.) (Zhengzhou: The Yellow River Water Conservancy Press) pp243–254 (in Chinese) [黄跃华, 许铁夫,杨丽英 2013 水处理技术 (第一版)(郑州:黄河水利 出版社) 第 243—254 页]
- [12] Shen Z, Zhu Z Y, Zhang M C 2015 Environ. Sci. Technol. 28 68 (in Chinese) [沈众, 朱增银, 张满成 2015 环境 科技 28 68]
- [13] Gao L, Wang Y G, Yan T, Cui L M, Hu L H, Yan L G, Wei Q, Du B 2015 New J. Chem. 39 2908
- [14] Shen Y, Fang Q, Chen B L 2015 Environ. Sci. Technol.
 49 67
- [15] Bi H C, Xie X, Yin K B, Zhou Y L, Wan S, He L B, Xu F, Banhart F, Sun L T, Ruoff R S 2012 Adv. Funct. Mater. 22 4421
- [16] Zhou P P 2010 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese) [周盼盼 2010 博士学位论文 (兰 州: 兰州大学)]
- [17] Peng Z 2013 M. S. Thesis (Kaifeng: Henan University) (in Chinese) [彭展 2013 硕士学位论文 (开封: 河南大学)]
- [18] Vinothkannan M, Karthikeyan C, Kumar G G, Kim A R, Yoo D J 2015 Spectrochim. Acta A 136 256
- [19] Jung C Y, Yao W, Park J M, Hyun I H, Seong D H, Jaung J Y 2015 Tetrahedron Lett. 56 6915
- [20] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558
- [21] Achaby M E, Miri N E, Snik A, Zahouily M, Abdelouahdi K, Fihri A, Barakat A, Solhy A 2016 J. Appl. Polym. Sci. 133 42356
- [22] Zhu H W, Xu Z P, Xie D 2011 Graphene: Structure, Synthetic Methods, Characterization (1st Ed.) (Beijing: Tsinghua University Press) pp25-28 (in Chinese) [朱宏 伟, 徐志平, 谢丹 2011 石墨烯: 结构、制备方法与性能表征 (第一版)(北京:清华大学出版社) 第 25-28 页]
- [23] Gao W, Majumder M, Alemany L B, Narayanan T N, Ibarra M A, Pradhan B K, Ajayan P M 2011 ACS Appl. Mater. Interfaces 3 1821
- [24] Wu J X, Xu H, Zhang J 2014 Acta Chim. Sinica 72 301
 (in Chinese) [吴娟霞, 徐华, 张锦 2014 化学学报 72 301]

- [25] Shi H C 2014 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [师浩淳 2014 博士学位论文 (天津: 天津大学)]
- [26] Ai L H, Jiang J 2012 Chem. Eng. J. 192 156
- [27] Tang L, Cai Y, Yang G D, Liu Y Y, Zeng G M, Zhou Y Y, Li S S, Wang J J, Zhang S, Fang Y, He Y B 2014 *Appl. Surf. Sci.* **314** 746
- [28] Liu F, Chung S, Oh G, Seo T S 2012 ACS Appl. Mater. Interfaces 4 922
- [29] Aksu Z 2001 Biochem. Eng. J. 7 79
- [30] Ho Y S, Mckay G 1999 Process Biochem. **34** 451
- [31] Ding S M, Feng X H, Wang Y T, Peng Q 2005 J. Anal. Sci. 21 127 (in Chinese) [丁世敏, 封享华, 汪玉庭, 彭祺 2005 分析科学学报 21 127]

Functional tissues based on graphene oxide: facile preparation and dye adsorption properties^{*}

Cao Hai-Yan¹⁾ Bi Heng-Chang¹⁾ Xie Xiao¹⁾ Su Shi¹⁾ Sun Li-Tao^{1)2)†}

(FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China)
 (Center for Advanced Carbon Materials, Southeast University and Jiangnan Graphene Research Institute,

Changzhou 213100, China)

(Received 16 March 2016; revised manuscript received 6 May 2016)

Abstract

Dye pollution, one of the most serious pollutions in water, remains a challenging issue in environmental engineering. Many strategies including membrane separation, chemical oxidation, electrolysis, adsorption, etc., have been adopted to remove the dyes from water. Compared with other methods, adsorption has its own unique advantages such as low cost, low energy consumption and high efficiency. However, commercial adsorbents have low adsorption capacities and separation of absorbents/water, which hinders their practical applications. In this paper, functional tissues based on graphene oxide are fabricated through a simple immersion method. The structure, morphology and adsorption ability for each of these functional tissues are characterized and analyzed by scanning electron microscopy, Raman spectroscopy, thermal gravity analysis and UV-Vis spectrophotometer. The combination of commercial tissue and graphene oxide can solve the aforementioned problems such as low adsorption capacity, hard separation of adsorbent from water. on the one hand, abundant oxygen-containing functional groups and defects existing in graphene oxide sheets can be used as active adsorption sites, which endows the functional tissue with high adsorption capacity; on the other hand, the crosslinking of commercial tissue and graphene oxide through hydrogen bonding enables the functional tissue to be completely recycled from water after adsorption, which can avoid the secondary pollution caused by adsorbents such as pure graphene oxide. Batch tests are conducted to investigate the adsorption performance, e.g. the influences of adsorption time, initial concentration of dyes, adsorbent amount, and temperature on the adsorption performance. The results suggest that functional tissue has excellent performance for the removal of methylene blue and rhodamine B. Giving that the initial concentrations of methylene blue and rhodamine B are 40 mg·L⁻¹ and 30 mg·L⁻¹ respectively, the adsorption capacities are 54.84 $\text{mg}\cdot\text{g}^{-1}$ and 21.74 $\text{mg}\cdot\text{g}^{-1}$, respectively. It is noteworthy that graphene oxide sheets play a critical role in adsorbing the dyes. The adsorption capacity of functional tissue based on graphene oxide for rhodamine B totally

^{*} Project supported by the National Science Fund for Distinguished Young iScholars of China (Grant No. 11525415), the International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China (Grant No. 51420105003), the Special Found for Research on National Major Research Instrument and Facilities of the National Natural Science Foundation of China (Grant No. 11327901), and the National Natural Science Foundation of China (Grant No. 51302037).

[†] Corresponding author. E-mail: slt@seu.edu.cn

results from graphene oxide component. Calculating the graphene oxide loading on the tissue, the adsorption capacity for rhodamine B reaches $183 \text{ mg} \cdot \text{g}^{-1}$ at initial concentration of $30 \text{ mg} \cdot \text{L}^{-1}$. Meanwhile, the adsorbance quantities of the functional tissue for the two dyes increase with adsorption time, initial concentration, adsorbent dosage, and temperature. Kinetic analysis reveals that the adsorption processes for methylene blue and rhodamine B are well-matched with the pseudo-second-order kinetic model, indicating the dominance of chemical adsorption in the whole adsorption process. The thermodynamic parameters indicate that the adsorption is spontaneous and endothermic in nature. In summary, a facile, inexpensive, and eco-friendly synthesis method is developed to fabricate the functional tissues based on graphene oxide. The functional tissues have high adsorption capacities for dyes. The combination of commercial tissue and graphene oxide could be explored as a new adsorbent for removing toxic organic dye pollutants from aqueous environment.

Keywords: adsorption, separation, graphene oxide, kinetic model

PACS: 68.43.Mn, 81.05.ue, 81.16.Be

DOI: 10.7498/aps.65.146802